

Cambridge International Examinations

Cambridge Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMBINED SCIENCE

5129/22

Paper 2

October/November 2016

2 hours 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 24 printed pages.

1 A micrometer is used to measure the thickness of a piece of metal.

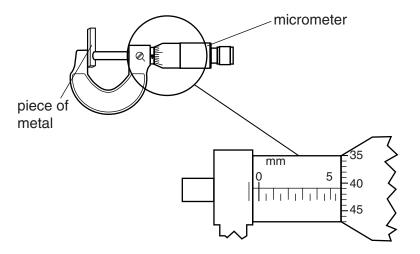
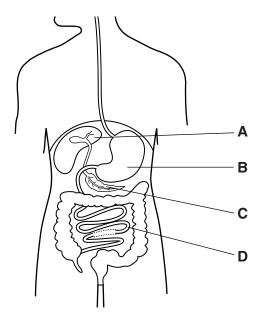


Fig. 1.1

(a) Determine the scale reading shown in Fig. 1.1.


reading =	 mm	[1]

(b) The piece of metal has a volume of 2.5 cm³ and a mass of 24 g.

Calculate the density of the metal.

density =
$$\dots$$
 g/cm³ [2]

2 Fig. 2.1 shows a diagram of the human alimentary canal.

		Fig. 2. i	
(a)	(i)	Name the structures labelled C and D on Fig. 2.1.	
		C	
		D	[2]
	(ii)	Using the letters in Fig. 2.1, state which structure produces	
		acid,	
		bile	[2]
(b)	Am	ylase is produced in the mouth.	<u>.</u> —.
	Sta	te and explain the function of amylase in digestion.	
			[2]
(c)	Exp	plain how bile helps digestion of fats.	
	••••		

3 The toy helicopter shown in Fig. 3.1 weighs 0.43 N.

Fig. 3.1

(a) Calculate the mass of the helicopter. [gravitational field strength g = 10 N/kg]

mass =	ka	[1]	
111acc —	ny		

(b) The speed-time graph for the motion of the helicopter is shown in Fig. 3.2.

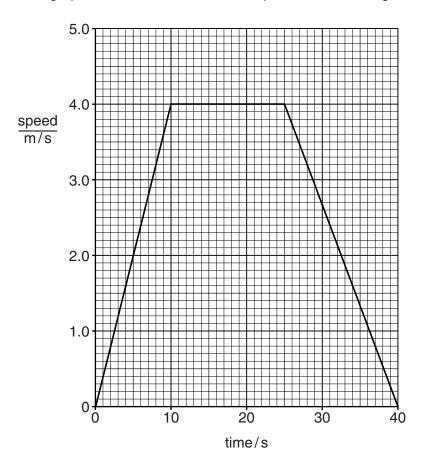


Fig. 3.2

(i) State the two times between which the acceleration is non-zero and constant.

(ii) The acceleration during the first 5 seconds is 0.4 m/s².

Calculate the force needed to cause this acceleration.

(iii) Calculate the distance travelled by the helicopter during the time that it is moving at constant speed.

Whe	en po	otassium nitrate is heated, it decomposes to produce potassium nitrite and oxygen.				
The	equ	ation for the reaction is shown.				
		$2KNO_3 \longrightarrow 2KNO_2 + O_2$				
[<i>A</i> _r :	O, 1	6; K, 39; N, 14]				
The	rela	tive molecular mass of potassium nitrate is 101.				
(a)	(i)	Calculate the relative molecular mass of potassium nitrite.				
			[1]			
	(ii)	Complete the following sentences.				
		202 g of potassium nitrate producesg of potassium nitrite and				
		g of oxygen.				
		5.05 g of potassium nitrate producesg of potassium nitrite.	[3]			
(b)	The	e electronic structure of an oxygen atom is shown in Fig. 4.1.				
		Fig. 4.1 Fig. 4.2				
	(i)	Complete Fig. 4.2 to show the electronic structure of an oxide ion.	[1]			
	(ii)	State the charge on the oxide ion.	[1]			
(c)	Oxy	ygen is used in welding torches.				
	State the name of the gas which is mixed with oxygen in a welding torch.					

© UCLES 2016 5129/22/O/N/16

4

5 Choose words or phrases from the list to complete the sentences.

Each word or phrase may be used once, more than once, or not at all.

aerobic	aerobic respiration		amino acids anaerobic resp		spiration		
	carbon	dioxide	fats	kidneys			
	liver	lungs	nitrogen	toxic			
Excretion is defined as the removal of materials and the waste							
products of meta	products of metabolism.						
Carbon dioxide is	formed in hu	ımans during t	he process of				
Urea is produced in the and is excreted by the							
Urea is formed from that the body does not need.							

6 Study the reaction scheme shown in Fig. 6.1.

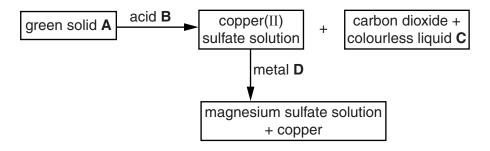


Fig. 6.1

(a)	Identify A, B, C and D.					
	green solid A					
	acid B					
	colourless liquid C					
	metal D		[4]			
(b)	Suggest how the copp	per may be removed from the magnesium sulfate solution.				
			[1]			
(c)	Describe the test and	the result of the test for carbon dioxide.				
	test					
	wa a I b		[0]			

7 A coiled spring is shown in Fig. 7.1.

$\begin{array}{c} \text{(III)} \\ \text{($

Fig. 7.1

A lo	ngitudinal wave passes along the spring.					
(a)	Explain what is meant by a <i>longitudinal</i> wave.					
	[2]					
(b)	The frequency of the waves is 6.0 Hz and the wavelength is 0.90 m.					
	Calculate the speed of the wave.					
	speed =m/s [2]					

8 A ray diagram for light passing into glass is shown in Fig. 8.1.

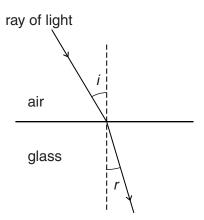


Fig. 8.1

(a) One pair of measurements for this experiment is

angle of incidence i	30.0°
angle of refraction r	19.0°

Show that the refractive index n of the glass is 1.54.

[2]

(b) The experiment is repeated for light entering water. The refractive index of water is 1.33. The angle of incidence is 30°.

On Fig. 8.2, draw a line to show how the path of the refracted ray in water differs from the path of the refracted ray in glass. Label your line with the letter \mathbf{W} .

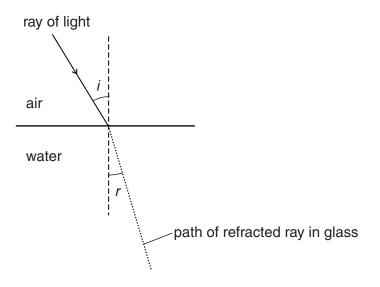


Fig. 8.2

[1]

9 Some definitions and names of biological processes are shown in Fig. 9.1.

definition process sexual reproduction the production of genetically identical offspring from one parent diffusion the movement of molecules from a region of higher concentration to a region of lower concentration asexual reproduction an externally administered substance which modifies or affects hormone chemical reactions in the body photosynthesis a chemical substance produced by a gland, carried by the blood, which alters the activity of one or more target organs drug a process by which plants manufacture carbohydrates from raw materials transpiration

Fig. 9.1

Draw a straight line from each definition to the correct biological process.

[5]

- 10 Metals and non-metals have different physical and chemical properties.
 - (a) Complete Table 10.1 to describe the general properties of metals and non-metals.

Table 10.1

property	metals	non-metals
melting point		
malleability		
electrical conductivity		
type of oxide		

[2]

(b) Aluminium is a metal.

$\overline{}$	omnlata	tha	following	cantanca	about	aluminium.
J	ulliblete	แเษ	IOIIOWIIIU	Sentence	about	alullillillulli.

Aluminium is used to make some aircraft parts because of its

...... and used to make food containers

because of its

11 The apparatus shown in Fig. 11.1 is used to investigate the strength of an electromagnet. The diagram is not to scale.

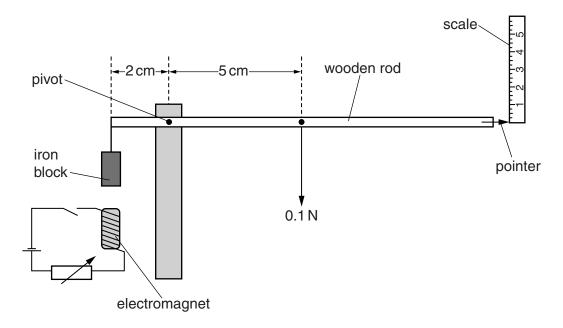


Fig. 11.1

A pointer is attached to one end of a uniform wooden rod of weight 0.1 N.

An iron block is suspended from the other end.

When the electromagnet is switched off, the rod is horizontal.

(a) (i) Calculate the moment of the weight of the rod about the pivot in Ncm.

moment = Ncm [1]

(ii) Use your answer from (a)(i) to calculate the weight of the iron block.

weight =N [1]

(b) The electromagnet in Fig. 11.1 is part of a circuit. The circuit is designed so that the strength of the electromagnet can be varied.

Suggest **two** ways in which the strength of the electromagnet may be increased.

1.

2.[2]

12 A food web is shown in Fig. 12.1.

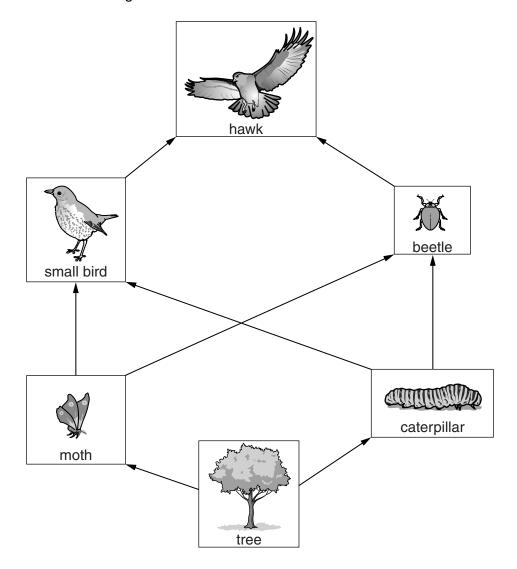


Fig. 12.1

(a)	Name the source of energy for the food web shown in Fig. 12.1.	
		[1]
(b)	Use the information in Fig. 12.1 to name	
	the producer,	
	an organism that feeds on consumers,	
	a herbivore.	
		[3]

c)	Explain why food chains are usually short.	
		ro

5129/22/O/N/16

13

14 A plastic ball rests on a horizontal sheet, as shown in Fig. 14.1.

The ball has positive charge.

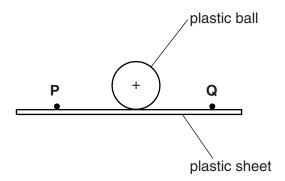


Fig. 14.1

The ball and the sheet are made of the same plastic material.

A charged object is placed at point **P**.

The ball moves towards point **Q**.

Explain why the ball moves towards point Q .	
	[2]

15 A student carries out an investigation into the rate of transpiration in plants.

Three identical shoots are placed in water and their leaves are treated as shown in Fig. 15.1. All three shoots are left for an hour in the same environment.

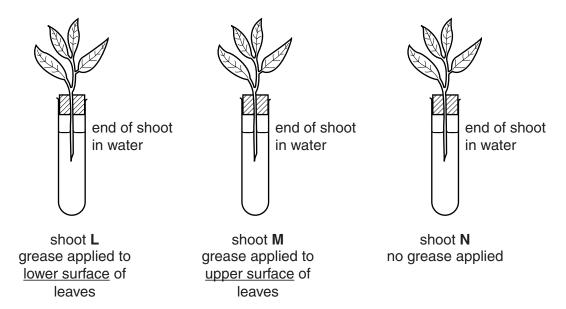


Fig. 15.1

Table 15.1 shows the results of this investigation.

Table 15.1

shoot	rate of transpiration/ arbitrary units per hour
L	2
М	14
N	16

(a)	Explain why shoot L transpires more slowly than shoot N .
	[3]

	(b) Explain why the transpiration rates for shoots w and n are almost the same.	
		[2]
16	Complete the following sentences about the elements in Group I of the Periodic Table.	
	Elements in Group I of the Periodic Table are known as the metals.	
	The elements are placed in Group I because they have	
	in the outermost shell.	
	The elements react with water to produce the metal and	
	gas.	
	This reaction becomesvigorous as the group is descended.	
		[4]

17 Fig. 17.1 shows a circuit containing two strips of aluminium foil and a lamp.

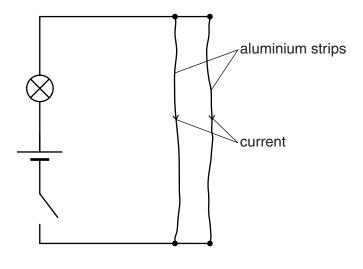


Fig. 17.1

The switch is closed and there is a current in the same direction through each of the strips. The foil strips move towards each other.

(a) Complete the sentences below about energy changes in the circuit.

	Che	emical energy in the cell is transferred to thermal energy and	
		energy in the bulb, and also to	
		energy as the aluminium	
	foil	strips move towards each other.	[2]
(b)	The	connections to the cell are reversed.	
	(i)	State what happens to the brightness of the lamp.	
			[1]
	(ii)	Suggest what happens to the movement of the aluminium foil strips.	
			[1]
(c)	The	lamp has a resistance of 3.0Ω and the potential difference across the lamp is 1.5 V.	
	Cal	culate the current in the lamp. State the unit.	

current = unit [3]

18 Parts of a flower are shown in Fig. 18.1.

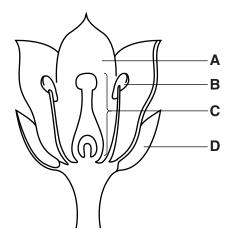


Fig. 18.1

[3]

19	Amı	moni	a is a gas that dissolves in water to produce an alkaline solution.	
	(a)	(i)	State the name of the ion which makes the solution alkaline.	
				[1]
		(ii)	When Universal Indicator paper is dipped into the solution, it goes blue.	
			Suggest the pH value of the solution.	[1]
	(b)	Amı	monia is used to manufacture fertilisers such as ammonium nitrate.	
		Nar	ne the acid that reacts with ammonia to make ammonium nitrate.	
				[1]
	(c)	Fer	tilisers are used to increase plant growth because they contain nitrogen.	
		Nar	me one other element needed for plant growth.	
				[1]
20		thre	ee types of emission from the decay of radioactive materials can be stopped by differ	ent
	(a)	Stat	te which emission or emissions are stopped by	
		lead	d,	
		pap	er	[2]
	(b)	Par	t of the equation for the decay of radon to polonium is shown.	
		Cor	mplete the equation.	
			$^{222}_{86}$ Rn \rightarrow $^{218}_{84}$ Po +	
				[2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Ś
Ξ
₽
Ε
ā
Ш
4
0
Φ
回
<u>a</u>
_
္ပ
ᇹ
0
Peric
æ
щ
he
The

	=	2 :	He	helium 4	10	Ne	neon 20	18	Ą	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Ru	radon				
	=				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Н	iodine 127	85	Αt	astatine				
	5				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	8	Ро	molod –	116	_	livermorium	ı
	>				7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ξ	bismuth 209				
	2				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pp	lead 207	114	Εl	flerovium	1
	=				5	Δ	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204				
											30	Zu	zinc 65	48	ပ္ပ	cadmium 112	80	Рg	mercury 201	112	S	copernicium	ı
											29	ŋ	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium	1
dn											28	Z	nickel 59	46	Pd	palladium 106	78	풉	platinum 195	110	Ds	darmstadtium	ı
Group											27	ပိ	cobalt 59	45	R	rhodium 103	77	٦	iridium 192	109	¥	meitnerium	ı
		- :	I	hydrogen 1							26	Pe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium	1
					ı						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	pohrium	1
						loc	SS				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium	1
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>a</u>	tantalum 181	105	op O	dubnium	ı
						ato	rela				22	ı=	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	弘	rutherfordium	ı
								-			21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids		
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium	1
	_				3	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	ъ.	francium	1
																2/0/1							_

71	ŋ	lutetium 175	103	۲	lawrencium	I
		ytterbium 173			_	I
69	E	thulium 169	101	Md	mendelevium	I
89	ш	erbium 167	100	Fm	ferminm	I
29	운	holmium 165	66	Es	einsteinium	I
99	ò	dysprosium 163	86	ರ	californium	I
65	Q L	terbium 159	97	Ř	berkelium	ı
64	g	gadolinium 157	96	Cm	curium	ı
63	Ш	europium 152	92	Am	americium	ı
62	Sm	samarium 150	94	Pn	plutonium	I
61	Pm	promethium -	93	ď	neptunium	I
09	P N	neodymium 144	92	\supset	uranium	238
59	P	praseodymium 141	91	Ра	protactinium	231
58	Ce	cerium 140	06	┖	thorium	232
57	Га	lanthanum 139	68	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.)